27 research outputs found

    Parallel based support vector regression for empirical modeling of nonlinear chemical process systems

    Get PDF
    In this paper, a support vector regression (SVR) using radial basis function (RBF) kernel is proposed using an integrated parallel linear-and-nonlinear model framework for empirical modeling of nonlinear chemical process systems. Utilizing linear orthonormal basis filters (OBF) model to represent the linear structure, the developed empirical parallel model is tested for its performance under open-loop conditions in a nonlinear continuous stirred-tank reactor simulation case study as well as a highly nonlinear cascaded tank benchmark system. A comparative study between SVR and the parallel OBF-SVR models is then investigated. The results showed that the proposed parallel OBF-SVR model retained the same modelling efficiency as that of the SVR, whilst enhancing the generalization properties to out-of-sample data

    CO2 Removal via an environmental green solvent, K2CO3-Glycine (PCGLY ) : Investigative analysis of a dynamic and control study

    Get PDF
    Promoted potassium carbonate with glycine has been actively investigated as a chemical solvent for the removal of CO2. Though a vast number of studies have been reported for potassium carbonate, dynamic studies regarding this promoted solvent are not yet extensively reported in the literature. In this work, a steady-state simulation has been performed via an equilibrium stage model in Aspen Plus V10 using the experimental data of an absorber from the bench scale pilot plant (MINI CHAS) located in Universiti Teknologi PETRONAS. In this study, 15 wt % K2CO3 + 3 wt % glycine is utilized as the medium for absorption, and the operating pressure is set at 40 bar to imitate the natural gas treatment process. The removal observed from the pilot plant is about 75% and the steady-state simulation with a tuned vaporization efficiency managed to replicate a similar result. The transient analysis is performed via activating a flow-driven method, and the simulation is transferred into Aspen Dynamic. A simple control strategy using a proportional-integral (PI) controller is installed at the gas outlet to monitor the CO2 composition, and further disturbances are introduced at the inlet gas flow rate using a step test and ramp test. The controller is tuned using a trial-and-error method and a satisfactory response is achieved under varying changes in the inlet gas flow rate. Further investigation is carried out using the model predictive controller (MPC), in which 5000 data points are generated through pseudorandom binary sequence (PRBS) analysis for state-space model system identification. The state-space model identified as the best is then used to design the MPC controller. A disturbance rejection test on the MPC controller is conducted via changing the gas flow rate at 5% and a quick response is observed. In conclusion, both MPC and PI controllers managed to produce a good response once the disturbance was introduced within the CO2-potassium carbonate-glycine (PCGLY) system

    NONLINEAR SYSTEM IDENTIFICATION AND PREDICTIVE CONTROL USING ORTHONORMAL BASIS FUNCTION (OBF)-NEURAL NETWORKS MODEL

    No full text
    Nonlinear empirical models in general, and neural networks models in particular, are normally developed using data from limited region of experimentation. In practice, time and cost are the two main factors that restrict the complete coverage of the whole input space. As a result, these models tend to be performing poorly in regions beyond the original operating conditions (also known as extrapolation regions). In practice however, the underlying conditions of every process plant are continually changing and extrapolation is completely inevitable. In this thesis, a nonlinear system identification framework using linear-plus-neural networks model is developed to address the widely acknowledged extrapolation limitations inherent in conventional neural networks models. The framework is established by integrating a linear Orthonormal Basis Filter (OBF) model and a nonlinear multi-layer perceptron neural networks (NN) model in a parallel structure. The overall nonlinear model is then taken as the sum of these two models. A parallel OBF-NN model is therefore obtained

    Multiscale fault classification framework using kernel principal component analysis and k-nearest neighbors for chemical process system

    No full text
    Process monitoring techniques in chemical process systems help to improve product quality and plant safety. Multiscale classification plays a crucial role in the monitoring of chemical processes. However, there is a problem in coping with high-dimensional correlated data produced by complex, nonlinear processes. Therefore, an improved multiscale fault classification framework has been proposed to enhance the fault classification ability in nonlinear chemical process systems. This framework combines wavelet transform (WT), kernel principal component analysis (KPCA), and K nearest neighbors (KNN) classifier. Initially, a moving window-based WT is used to extract multiscale information from process data in time and frequency simultaneously at different scales. The resulting wavelet coefficients are reconstructed and fed into the KPCA to produce feature vectors. In the final step, these vectors have been used as inputs for the KNN classifier. The performance of the proposed multi-scale KPCA-KNN framework is analyzed and compared using a continuous stirred tank reactor (CSTR) system as a case study. The results show that the proposed multiscale KPCA-KNN framework has a high success rate over PCA-KNN and KPCA-KNN methods

    Computational Experience with Piecewise Linear Relaxations for Petroleum Refinery Planning

    No full text
    Refinery planning optimization is a challenging problem as regards handling the nonconvex bilinearity, mainly due to pooling operations in processes such as crude oil distillation and product blending. This work investigated the performance of several representative piecewise linear (or piecewise affine) relaxation schemes (referred to as McCormick, bm, nf5, and nf6t) and de (which is a new approach proposed based on eigenvector decomposition) that mainly give rise to mixed-integer optimization programs to convexify a bilinear term using predetermined univariate partitioning for instances of uniform and non-uniform partition sizes. The computational results showed that applying these schemes improves the relaxation tightness compared to only applying convex and concave envelopes as estimators. Uniform partition sizes typically perform better in terms of relaxation solution quality and convergence behavior. It was also seen that there is a limit on the number of partitions that contribute to relaxation tightness, which does not necessarily correspond to a larger number of partitions, while a direct relationship between relaxation size and tightness does not always hold for non-uniform partition sizes
    corecore